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Our predictive model for particulate filled composite materials is applied to epoxy resin tough- 
ened by rubber spheres. Good agreement is found between predicted values of stiffness and 
experimental measurements. The variability of yield stress with volume fraction is explained. 
The observed fracture processes, including rubber cavitation, are explored; the importance of 
thermal stresses is highlighted. The fracture behaviour of these materials is discussed in the 
light of these predictions. 

1. I n t r o d u c t i o n  
Polymeric materials toughened by addition of rubber 
are being increasingly used both as adhesive materials 
and as the matrices of fibre reinforced composite 
materials. The rubber forms discrete spheres in a poly- 
mer matrix. The mechanism of toughening has been 
the subject of much controversy in the literature. The 
toughening may not take place for high speed impact 
tests [1] or in the presence of a constraint such as thin 
bond adhesive application [2]. It is, therefore, of con- 
siderable importance that the source of the toughness 
is elucidated. This source of the toughness may be 
found by examination of stress distributions which 
can be provided by our theoretical model. 

The deformation and fracture behaviour of rubber 
toughened epoxy resin has recently been reviewed and 
investigated b~ Kinloch and his coworkers [3-5] and 
by Yee and Pearson [6, 7]. Results of both mechanical 
studies and microscopic observations from both these 
studies show that deformation occurs via voiding and 
cavitation of the rubber particles, with shear yielding 
in the resin matrix. An alternative model for the 
toughening of these materials arising from the tearing 
of rubber particles has been proposed [8]; the short- 
comings of this approach have been fully discussed 
[3, 6]. 

Our results presented here do not include full 
examination of thermal stresses arising from curing. 
The difference in thermal expansion coefficients for 
rubber and epoxy resin means that the rubber sphere 
will be in hydrostatic tension after cooling. The 
properties of these materials are very sensitive to con- 
ditions of curing [9], which must indicate sensitivity to 
thermal stresses. Thermal stresses in fibre reinforced 
composites have been found to relax even when the 
material is left at zero stress; this relaxation is shown 
by changes in specific damping capacity [10] and 
acoustic emission behaviour [11]. Such relaxation 

might occur more rapidly under conditions of stress. 
Our analysis shows that the fracture processes for 
these materials may be dependent on thermal stresses 
(Section 5). There is urgent need for further theoretical 
and experimental investigation of thermal stresses and 
their possible relaxation. 

2. Analysis 
The method of analysis was identical to the method 
described for the hard particles [12]. The method of 
analysis has been fully described by Davy and Guild 
[13]. Finite element analysis is carried out for a sphere 
centred in a cylinder of resin, as shown in Fig. 1, using 
axisymmetric elements for the plane ABCD. The 
deformed grid shape is constrained as shown. The 
finite element analysis package used is LUSAS, run- 
ning on an ICL 2988 computer. A statistical model of 
a particulate filled composite has been developed [13]; 
the model assumes that the spheres are randomly 
distributed, but they are not allowed to overlap. The 
statistical analysis allows results from finite element 
analyses, that is results from analyses of a sphere 
within a cylinder of resin, to be related to an overall 
volume fraction of randomly distributed spheres. The 
property values are calculated from combining results 
from three different finite element analyses, and are 
presented as bounds. These bounds arise from the 
statistical variability of the microstructure, which has 
been modelled to consist of varying size cylinders; 
the bounds are described as "equal stress" and 
"equal strain" bounds, dependent on the assumption 
made regarding the load distribution to the different 
cylinders. 

The material properties used were those proposed 
by Maxwell [14] and are shown in Table I. Finite 
element analysis was carried out for the primary grids 
and for the grids necessary to calculate the dispersion 
factors. Dispersion factors must be applied to numerical 

2454 0022-2461/89 $03.00 + .12 © 1989 Chapman and Hall Ltd. 



f . , , ~  

p o i e  
t 
/- 

e qua fo r  

results to allow for the effect of the variability of the 
distribution of the spheres [13]; results from finite 
element analysis may be directly associated with 
volume fraction after the application of dispersion 
factors. As in our previous paper [12], most graphical 
results presented have been fully calculated and are 
accurately associated with volume fraction. Contour 
diagrams, however, were obtained from finite element 
analysis of the primary grid only; the values are not, 
therefore, numerically accurate. All stress results are 
expressed as stress concentration factors, that is as the 
ratio of the local stress to the average stress applied to 
the composite. 

3. Young's modulus 
The predicted variation of Young's modulus of epoxy 
resin reinforced with varying volume fractions of 
rubber, spheres is shown in Fig. 2. Fig. 2 includes 
the theoretical values calculated assuming regular 
hexagonal packing [15]. The near linear relationship 
between this property and volume fraction leads to 
very similar results for the two methods of prediction 
[16]. The measured Young's modulus [14] for epoxy 
resin reinforced with 15% volume fraction of rubber 
spheres is also included. The value shown is the mean 
value measured at different temperatures, the modulus 
value being expressed as the ratio of the composite to 
matrix modulus; the error bar shown is one standard 
deviation. 

This measured value is significantly higher than the 
predicted range. We postulate that the lack of precise 
numerical agreement could arise from the description 
of the rubber properties required by LUSAS, and 
our assumption here that the phases are perfectly 
separated. The predicted values of overall modulus 
are relatively insensitive to precise value of rubber 
modulus. The modulus value used was 0.0004 GPa; 
the predicted overall modulus value increased by only 
7% for an increase in rubber modulus of two orders of 
magnitude. The predicted overall modulus is found to 
decrease by a similar amount'if the Poisson's ratio of 
the rubber is decreased from the value used, 0.499, to 
0.4. The properties of the rubber could probably best 

T A B L E  I Constituent material properties 

Epoxy resin matrix Rubber sphere 

Young's modulus Poisson's Young's modulus Poisson's 
E (GPa) ratio E (GPa) ratio 

3.21 0.35 0.0004 0.499 

Figure 1 The finite element model. 
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be described using a Poisson's ratio of 0.5, but 
this causes problems for the finite element analysis. 
The higher experimental value compared with our 
theoretical predictions therefore probably arises from 
some stiffening of the rubber via the epoxy, from the 
inadequate description of the Poisson's ratio of the 
rubber, and from incomplete phase separation leading 
to a lower rubber volume fraction than expected from 
the formulation. 

Our theoretical predictions are compared with 
experimental results from Yee and Pearson [6] in 
Fig. 3. We note that the almost linear relationship 
between Young's modulus and volume fraction shown 
in Fig. 3 is of the same form as the relationship 
measured experimentally by Yee and Pearson [6]. 
Further, their experimental results show an approxi- 
mate 30% decrease in Young's modulus for about 
20% volume fraction of rubber; the magnitude of this 
decrease is in agreement with our predicted decrease 
(Fig. 3). 

Our model predicts that the overall modulus of the 
composite is relatively insensitive to the modulus of 
the rubber. This result raises questions regarding the 
work which has been presented as justification of 
the theory of rubber tearing as the major source of 

5.5 

2.5 

0 
Lu 2 

1.5 

0 1C) 210 3to 440 50 

Vol.ume fraction (%) 

"0.8 

o 

~j 

-o.6 

"0./, 

Figure 2 Variation of Young's modulus, E, with volume fraction for 
epoxy resin filled with rubber spheres (e  equal stress predicted 
values using our model, o equal strain, zx predicted values assuming 
regular hexagonal array, x experimental value, with error bar [14]). 
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Figure 3 Variation of Young's modulus, E, with volume fraction for 
epoxy resin filled with rubber spheres (o equal stress predicted 
values, O equal strain, x experimental values [6]). 

toughening in these materials [17]. Radiation treat- 
ment was used to increase the cross-link density of the 
rubber, thus increasing the tear energy. This par- 
ameter was considered to be the only material 
property changed by the radiation treatment, thus 
the toughening peak at mid-dose was attributed to 
the point when both deformation and tearing of the 
particles occurred. We note however that an increased 
Young's modulus of the composite with dose was 
measured; our results show the insensitivity of the 
composite modulus to rubber modulus and we there- 
fore propose that the change in composite modulus 
must indicate a very large change in rubber modulus. 
Radiation is, therefore, changing the stress distribu- 
tions, and the measured toughening peak represents 
the most favourable distribution. This effect will be 
considered in detail in a future paper [18]. 

4. Stress distr ibut ions 
4.1. Concent ra t ion  of direct stress 
Fig. 4 shows the contour diagram for the concentra- 
tion of the applied stress, O-yy, for the primary grid for 
21.1% volume fraction of rubber. Maximum stress 
concentration is found at the interface at the equator 
of the sphere. Examination of other contour diagrams 
confirmed that this is the maximum principal stress in 
the system. The value of this maximum stress concen- 
tration factor varies sharply with volume fraction of 
rubber spheres, as shown in Fig. 5. The position of 
maximum stress concentration, at the equator of the 
sphere, is in agreement with previous theoretical 
predictions and experimental results [19]. Crack 
growth is attracted to the equator of the sphere. 

4.2. Stresses at the interface 
Stresses around the interface were converted to polar 
coordinates; uncorrected values for the same grid are 
shown in Fig. 6. The shear stresses in both the resin 
matrix and the rubber sphere are zero. The only high 
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Figure 4 Contours of stress concentration factor of applied stress, 
ayy, for primary grid for epoxy resin filled with 21.1% volume 
fraction of rubber spheres. 

stress is the tangential stress in the resin matrix, which 
has its maximum, the maximum stress in the system, 
at the equator of the rubber sphere. The radial stresses 
in the resin and rubber are equal and constant around 
the interface; the tangential stress in the rubber is also 
identical. We note that the radial stress at the interface 
is far smaller than that found for epoxy resin filled 
with glass spheres [12]. This result indicates that for 
rubber spheres there is no tendency for debonding at 
the interface, in contrast to the tendency for debond- 
ing for the glass filled material. 

Fig. 6 shows that very little stress is transmitted to 
the rubber; the rubber sphere is acting like a hole. This 
is confirmed in Fig. 7 which compares values of maxi- 
mum stress concentration factor, at the equator, for 
epoxy resin containing holes or rubber spheres, for 
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Figure 5 Variation of stress concentration factor of applied stress, 
ayy, with volume fraction of rubber spheres (e equal stress, O equal 
strain). 
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Figure 6 Variation of  stress concentration factors of  interface 
stresses, in polar coordinates, for primary grid for epoxy resin filled 
with 21.1% rubber spheres (rq radial stress in resin, • tangential 
stress in resin, + radial stress in rubber, 0 tangential stress in 
rubber). 

different finite element grids. The values are hardly 
changed by the presence of the rubber. 

4.3. Hydrostatic stress in the rubber particle 
Examination of the stresses in the rubber show that 
the whole particle is in uniform pure hydrostatic ten- 
sion. The variation of this stress concentration factor 
of hydrostatic tension with volume fraction is shown 
in Fig. 8. The magnitude of this stress is uniform 
throughout the sphere within the accuracy of these 
predictions indicated by Fig. 8. Although the value of 
this stress concentration is about two orders of mag- 
nitude smaller than the maximum stress concentration 
in the resin (Fig. 6), its magnitude may be significant 
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Figure 7 Comparison of stress concentration factor of  applied stress 
at the equator for epoxy resin containing holes or rubber spheres 
(o  rubber sphere, • hole). 
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Figure 8 Variation of  stress concentration factor of  hydrostatic 
tensile stress in rubber sphere with volume fraction ( e  equal stress, 
o equal strain). 

since the difference in moduli is around five orders of 
magnitude. The magnitude of the stress concentration 
of hydrostatic tension in the rubber increases with 
increasing volume fraction as shown in Fig. 8. 

Thermal stresses from cooling of the composite also 
place the rubber particle in hydrostatic tension. Full 
examination of thermal stresses is beyond the scope of 
this paper, but a preliminary examination has been 
carried out. Cooling of the composite places the 
rubber sphere in hydrostatic tension, the value being 
almost constant between rubber volume fractions of 
7% and 27%. The exact value of hydrostatic tension 
cannot be deduced from our results since the tempera- 
ture dependence of the moduli cannot be included. We 
note however that cooling through 10°C assuming 
room temperature moduli predicts that the rubber 
particle will be at around 1 MPa hydrostatic tension; 
this may be an indication of the true value. 

4.4 .  C o n c e n t r a t i o n  of  y ie ld  st ress 
Contours of  Von Mises stress for the same grid are 
shown in Fig. 9. The maximum Von Mises stress is 
found at the interface, at the equator of the sphere, the 
identical position to the maximum direct stress. The 
position of the maximum remains unchanged for dif- 
ferent volume fractions, but the magnitude of the 
stress concentration factor increases sharply with 
increased volume fraction, as shown in Fig. 10. The 
magnitude of the hydrostatic stress at the equator is 
less dependent on volume fraction; there is little 
increase up to around 20% volume fraction and it 
then increases by a factor of 2 between 20 and 50% 
volume fraction. 

Our finite element predictions may be directly 
compared with experimental values of yield stress. 
Experimental values of yield stress at varying volume 
fractions of rubber are available from Yee and 
Pearson [6]. Our predictions (Fig. 10) show that 
a stress concentration of yield stress, Von Mises 
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Figure 9 Contours of stress concentration factor of Von Mises 
stress, av, for primary grid for epoxy resin filled with 21.1% volume 
fraction of rubber spheres. 

stress, of almost 2 is found for a single rubber sphere. 
The experimental results do not show a very steep 
change in applied stress for yield at low volume 
fractions. We can however compare the change in 
applied stress required for yield between about 10% 
and 20% volume fraction of rubber. Our predictions 
show an increase in stress concentration factor from 
2.05 to 2.30 over this range. Assuming that yield 
occurs when the stress within the material reaches 
a given level, and we note that hydrostatic stress 
over this range changes slowly, this increase in 
stress concentration factor predicts that the applied 
stress at 20% rubber volume fraction should be 89% 
of the applied stress at 10% rubber volume fraction; 
the decrease measured [6] was from 55 to 50MPa, 
i.e. 91%. This excellent agreement gives further 
confidence to our predictions. 
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Figure 10 Variation of maximum stress concentration factors of 
Von Mises stress with volume fraction for epoxy resin filled with 
rubber spheres (o equal stress, O equal strain). 
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Figure 11 Polished surface of epoxy resin filled with rubber spheres 
showing shear bands forming from the equators of the rubber 
particles after deformation (courtesy Dr D. L. Maxwell) [14]. 

Shear bands in the resin would be expected to grow 
from the point of maximum concentration of  Von 
Mises stress, predicted to be the equator of  the sphere. 
This result is found on the side surfaces of deformed 
samples (Fig. 11). Shear bands growing from the 
equators of rubber particles are clearly visible. 

5. Fracture  behav iour  
Yee and Pearson [6] describe the fracture processes to 
be cavitation of the particles followed by yield of 
the resin; they consider yield impossible until after 
cavitation. Our results, however, show that the rubber 
particle behaves very like a hole in respect to the stress 
distribution in the resin (Fig. 7) so cavitation should 
not be essential prior to yield. 

Gent and Lindley [20] have shown that cavitation of  
rubber can occur at relatively low stresses. Their 
analysis was later extended to include surface energy 
effects for small holes [21]. Surface energy effects are 

"important for initial holes smaller than 0.1 #m radius. 
The hydrostatic stress required for cavitation from an 
initial hole with radius greater than about 0.1 #m has 
been shown to approximate to the modulus of  the 
rubber [22], i.e. about 0.4 MPa. For  an initial hole of  
radius 0.01#m the stress required for cavitation 
increases by a factor of 40. Schwier et al. [23], in their 
experimental investigation of polystyrene filled with 
polybutadiene rubber spheres, concluded that intrin- 
sic cavitation of rubber spheres occurred at about 
60 MPa overall hydrostatic tension. 

Our preliminary examination of thermal stresses 
has found that the rubber sphere is subjected to some 
hydrostatic tension from cooling, perhaps of  the order 
of 1 to 10 MPa. Our results in Fig. 8 predict that for 

2 0 %  volume fraction of rubber the concentration 
factor of hydrostatic tension in the rubber is about 
0.025. Shear band formation probably occurs at about  
40 MPa stress for epoxy resins [14]; our model predicts 
that this average applied tensile stress would subject 
the rubber spheres to a further 1 MPa hydrostatic 
tension. Doyle [24] used finite element analysis to also 
show that the rubber particle would be subjected to 



Figure 12 Fracture surfaces of polymers filled with rubber spheres showing rubber cavitation (a) epoxy resin (courtesy Dr D. L. Maxwell 
[14]), (b) polyurethane (courtesy Dr J. L. Stanford [25]). 

additional hydrostatic tension by the presence of a 
crack or shear band. 

Cavitation of rubber particles has been clearly 
observed by many workers including Yee and Pearson 
[6] and Maxwell [14] in rubber-modified epoxy resins 
and by Stanford and his coworkers [25] in their studies 
of rubber toughened polyurethane. Examples of cavi- 
tation of rubber particles on fracture surfaces are 
shown in Fig. 12 and it can be seen that cavitation is 
generally found to initiate from the centre of the 
sphere. Our predictions do not indicate a preferred 
point of initiation but it is clear that they show that 
the imposition of an overall tensile stress of the order 
of the matrix yield stress places the rubber particles in 
sufficient hydrostatic tension to initiate cavitation 
from small flaws. These flaws may be areas of rubber 
which are not fully polymerized and which could not 
be observed using conventional microscope tech- 
niques. There is some argument as to whether or not 
the cavitation of the rubber particles is necessary 
before shear bands form. Clearly our results show 
that the two processes can take place independently 
although the exact stress levels for shear band forma- 
tion and cavitation will depend upon the values of 
stress required to form matrix shear bands and cause 
rubber cavitation for the system in question. Yee and 
Pearson [6] report seeing cavitation before matrix 
yielding whereas the fracture surfaces in Fig. 12 result 
from complex deformation and so do not give any 
information on this point. 

Epoxy resins reinforced with rubber spheres may 
be described as inherently tough materials since the 
position of maximum stress concentration, where a 
crack would be attracted, is at the equator of the 
sphere; the sphere would be a barrier to further crack 
growth. However, Fig. 5 shows that the magnitudes 
rise very sharply at high volume fractions. A simple 
description of toughness could be that yield is the 
preferred mechanism to crack growth. Fig. 5 shows 
the very high stress concentration of applied stress at 
high volume fractions; crack growth could become 

more preferred at high volume fractions leading to 
decreased toughness. This effect was noted by Kunz 
et al. [26] who found a rapid increase in toughness 
until around 5 pbw (parts by weight) rubber, around 
10% volume fraction, followed by a plateau. A similar 
effect was found by Spanoudakis and Young [19] for 
epoxy resin reinforced with glass spheres treated with 
a release agent; the sphere must be behaving as a 
"stable hole", and stress distribution in the resin must 
be similar to our predictions here; the observed crack 
growth for glass spheres treated with a release agent 
supported the expected maximum stress concentra- 
tion at the equator of the sphere. They found that 
fracture toughness decreased with volume fraction 
above about 30% for this material, although for glass 
spheres coupled to the resin matrix the toughness 
increased throughout the range of volume fraction. 

Stress distributions in the matrix for resin contain- 
ing rubber spheres has been found to be very similar 
to those for resin containing holes. Shear band forma- 
tion in the resin would occur very similarly for the two 
materials. However, epoxy resin containing holes is 
known to be a very poor material. We therefore postu- 
late that shear band formation is not the only impor- 
tant fracture mechanism for this material. Our results 
have shown that cavitation of the rubber particles 
is likely to occur, in agreement with experimental 
observations; after cavitation the rubber may be 
stretched. The presence of thermal stresses, causing 
the rubber sphere to be in hydrostatic tension, may be 
necessary for cavitation to occur; such stress may be 
very different when the material is used as a composite 
matrix or as thin bond adhesive. 

It appears that the processes of rubber cavitation 
and stretching may make important contributions to 
the overall fracture energy. The magnitude of these 
contributions is dependent on the modulus of the 
rubber. This effect will be studied theoretically in our 
future paper [18], but could also be a subject of fruitful 
experimental study. Further contribution to the frac- 
ture energy of epoxy resin containing rubber spheres 
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may arise from the physical presence of the rubber 
which would act as a crack stopper to a growing crack 
attracted to the equator of the sphere by either the 
concentration of direct stress or the initiation of shear 
bands. 

6. Concluding remarks 
Our combination of finite element analysis and spatial 
statistical techniques allows results from finite element 
analysis to be applied to real composite materials. 
Comparison of our predictions with experimental 
results for epoxy resin reinforced with soft particles 
provides valuable insights into the mechanical behaviour 
of these materials. The importance of thermal stresses 
has been highlighted; the implication of our model 
that their presence is required for high toughness 
needs further theoretical and experimental investiga- 
tion. The design of optimum particulate reinforced 
materials in terms of the desired volume fraction of 
filler and constituent material properties may now be 
considered. 

Acknowledgements 
We are indebted to Dr P. J. Davy, Dr W. R. Davies 
and Dr J. R. Wright for valuable discussions. We 
acknowledge the interest and help in running LUSAS 
from F.E.A. Ltd. and staff of the computer centre at 
QMC. F. J. Guild is now also an honorary research 
fellow in the Department of Mechanical Engineering, 
Plymouth Polytechnic. 

References 
1. G, A. CROSBIE and M. G. PHILLIPS, J. Mater. Sci. 20 

(1985) 182. 
2. D, L. HUNSTON and W. D. BANSCOM, in "Rubber- 

modified thermoset resins" edited by C. K. Riew and J. K. 
Gilham, Adv. Chem. Series 208 (1984). 

3. A. J. KINLOCH, S. J. SHAW, D. A. TOD and D. L. 
HUNSTON, Polymer 24 (1983) 1341. 

4. A. J. KINLOCH, S. J. SHAW and D. L. HUNSTON, 
ibid. 24 (1983) 1355. 

5. A, J. KINLOCH and D. L. HUNSTON, J. Mater. Sci. 
Lett. 5 (1986) 1207. 

6, A. F. YEE and R. A. PEARSON, J. Mater. Sci. 21 
(1986) 2462. 

7, R. A. PEARSON and A. F. YEE, ibid, 21 (1986) 2475. 
8. S. KUNZ-DOUGLASS,  P . W . R .  BEAUMONT and 

M. F. ASHBY, ibid. 15 (1980) 1109. 
9, A. C. MEEKS, Polymer lfi (1974) 675. 

10. R. D. ADAMS, Private communication (1987), Bristol 
University. 

11. B. HARRIS, F. J. GUILD and C. R. BROWN, J. Phys. 
O 12 (1979) 1385. 

12. F. J. GUILD and R. J. YOUNG, J. Mater. Sei. 24 
(1989) 298. 

13. P. J. DAVY and F. J. GUILD, Proe. R. Soe. A 418 
(1988) 95. 

14. D. L. MAXWELL, PhD Thesis, University of London, 
London (1987). 

15. B. D. AGARWAL, G. A. PANIZZA and L, J. BROUT- 
MAN, J. Amer. Ceram. Soe. 54 (1971) 620. 

I6. F. J. GUILD, P. J. DAVY and P. J. HOGG, "A model 
for unidirectional composites in longitudinal tension and com- 
pression". Comp. Sei. and Teehn. (in press). 

17. J. A. SAYRE, S. C. KUNZ and R. A. ASSINK, in 
"Rubber-modified thermoset resins" edited by C. K: Riew 
and J. K. Gilham, Adv. Chem, Series 208 (1984). 

[8. F. J. GUILD and R. J. YOUNG, "A predictive model 
for particulate filled composite materials: Part 3 Effect of 
constituent material properties", paper in preparation. 

19. J. SPANOUDAKIS and R. J. YOUNG, J. Mater. Sci. 19 
(1984) 487. 

20. A. N. GENT and P. B. LINDLEY, Proe. R. Soe. A 249 
(1959) 195. 

21. A. N. GENT and D. A. TOMPKINS, J. Appl. Phys. 40 
(1969) 2520. 

22. A. J. KINLOCH and R. J. YOUNG, "Fracture Behaviour 
of Polymers" (Applied Science Publishers, London, 1983). 

23. C. E. SCHWIER, A. S. ARGON and R. E. COHEN, 
Phil. Mag. 52 (1985) 581. 

24. M. J. DOYLE, Proc. Deformation, Yield and Fracture of 
Polymers, PRI (1987) paper 50. 

25. J. L. CAWSE, J. L. STANFORD and R. H. STILL, 
Polymers Churchill Conference, Cambridge, 28 (1987) 368. 

26. S. C. KUNZ, J. A. SAYRE and R. A. ASSINK, ibid. 
23 (1982) 1897. 

Received 14 July 
and accepted 15 August 1988 

2460 


